Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 153: 213574, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542913

RESUMO

The advent of additive manufacturing (AM) is rapidly shaping healthcare technologies pushing forward personalisation and enhanced implant functionalisation to improve clinical outcomes. AM techniques such as powder bed fusion (PBF) have been adopted despite the need to modify the as-built surface post manufacture. Medical device manufacturers have focused their efforts on refining various physical and chemical surface finishing approaches, however there is little consensus and some methods risk geometry alteration or contamination. This has led to a growing interest in laser texturing technologies to engineer the device surface. Herein, several bioinspired micro and nano textures were applied to laser PBF Ti-6Al-V4 substrates to alter physicochemical properties and in-turn we sought to understand what influences these alterations had on a human osteosarcoma cell line (MG63). Significant variations in roughness and time dependent contact angles were revealed between different patterns provide a tool to elicit desired biological responses. All surface treatments effectively enhanced early cell behaviour and in particular coverage was increased for the micro-textures. Influence of the patterns on cell differentiation was less consistent with alkaline phosphatase content increased only for the channel, grid and dual textures. While long term (21 days) mineralisation was found to be significantly enhanced in grids, dual, triangles and shark skin textures. Further regression analysis of all physicochemical and biological variables indicated that several properties should be used to strongly correlate cell behaviour, resulting in 82 % of the 21 day mineralisation dataset explained through a combination of roughness kurtosis and glycerol contact angle. Overall, this manuscript demonstrates the ability of laser texturing to offer tailored cell-surface interactions, which can be tuned to offer a tool to drive functional customisation of anatomically customised medical devices.


Assuntos
Neoplasias Ósseas , Titânio , Humanos , Próteses e Implantes , Lasers , Linhagem Celular
2.
Sensors (Basel) ; 20(8)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295102

RESUMO

This paper presents a micromachining process for lithium niobate (LiNbO3) material for the rapid prototyping of a resonant sensor design for medical devices applications. Laser micromachining was used to fabricate samples of lithium niobate material. A qualitative visual check of the surface was performed using scanning electron microscopy. The surface roughness was quantitatively investigated using an optical surface profiler. A surface roughness of 0.526 µm was achieved by laser micromachining. The performance of the laser-micromachined sensor has been examined in different working environments and different modes of operation. The sensor exhibits a Quality-factor (Q-factor) of 646 in a vacuum; and a Q-factor of 222 in air. The good match between the modelling and experimental results shows that the laser-micromachined sensor has a high potential to be used as a resonance biosensor.


Assuntos
Técnicas Biossensoriais/métodos , Microtecnologia , Nióbio/química , Óxidos/química , Técnicas Biossensoriais/instrumentação , Lasers , Microscopia Eletrônica de Varredura
3.
Micromachines (Basel) ; 11(2)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093369

RESUMO

The uniform energy distribution of top-hat laser beams is a very attractive property that can offer some advantages compared to Gaussian beams. Especially, the desired intensity distribution can be achieved at the laser spot through energy redistribution across the beam spatial profile and, thus, to minimize and even eliminate some inherent shortcomings in laser micro-processing. This paper reports an empirical study that investigates the effects of top-hat beam processing in micro-structuring and compares the results with those obtainable with a conventional Gaussian beam. In particular, a refractive field mapping beam shaper was used to obtain a top-hat profile and the effects of different scanning strategies, pulse energy settings, and accumulated fluence, i.e., hatch and pulse distances, were investigated. In general, the top-hat laser processing led to improvements in surface and structuring quality. Especially, the taper angle was reduced while the surface roughness and edge definition were also improved compared to structures produced with Gaussian beams. A further decrease of the taper angle was achieved by combining hatching with some outlining beam passes. The scanning strategies with only outlining beam passes led to very high ablation rates but in expense of structuring quality. Improvements in surface roughness were obtained with a wide range of pulse energies and pulse and hatch distances when top-hat laser processing was used.

4.
Nanoscale ; 9(39): 15159, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-28972611

RESUMO

Correction for 'Femtosecond laser ablation of transparent microphotonic devices and computer-generated holograms' by Tawfiq Alqurashi, et al., Nanoscale, 2017, 9, 13808-13819.

5.
Nanoscale ; 9(36): 13808-13819, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28891581

RESUMO

Femtosecond laser ablation allows direct patterning of engineering materials in industrial settings without requiring multistage processes such as photolithography or electron beam lithography. However, femtosecond lasers have not been widely used to construct volumetric microphotonic devices and holograms with high reliability and cost efficiency. Here, a direct femtosecond laser writing process is developed to rapidly produce transmission 1D/2D gratings, Fresnel Zone Plate lenses, and computer-generated holograms. The optical properties including light transmission, angle-dependent resolution, and light polarization effects for the microphotonic devices have been characterized. Varying the depth of the microgratings from 400 nm to 1.5 µm allowed the control over their transmission intensity profile. The optical properties of the 1D/2D gratings were validated through a geometrical theory of diffraction model involving 2D phase modulation. The produced Fresnel lenses had transmission efficiency of ∼60% at normal incidence and they preserved the polarization of incident light. The computer-generated holograms had an average transmission efficiency of 35% over the visible spectrum. These microphotonic devices had wettability resistance of contact angle ranging from 44° to 125°. These devices can be used in a variety of applications including wavelength-selective filters, dynamic displays, fiber optics, and biomedical devices.

6.
RSC Adv ; 7(29): 18019-18023, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30174826

RESUMO

Optical diffusers are widely used in filament lamps, imaging systems, display technologies, lasers, and Light Emitting Diodes (LEDs). Here, a method for the fabrication of optical diffusers through femtosecond laser machining is demonstrated. Float glass surfaces were ablated with femtosecond laser light to form nanoscale ripples with dimensions comparable to the wavelength of visible light. These structures produce highly efficient and wide field of view diffusers. The machined patterns altered the average surface roughness, with the majority of particles in the range of a few hundred nanometers. The optical diffusion characteristic and a maximum diffusion angle of near 172° was achieved with optimum machining parameters. The transmission performance of the diffusers was measured to be ∼30% across the visible spectrum. The demonstrated technique has potential for producing low-cost large area optical devices. The process benefits from the flexibility of the laser writing method and enables the production of custom optical diffusers.

7.
Nanoscale ; 7(29): 12405-10, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100269

RESUMO

Laser directed patterning of carbon nanotubes-based buckypaper for producing a diffractive optical device is presented here. Using a laser ablation method the buckypaper was patterned into a binary Fresnel zone plate lens. Computational modelling was performed which revealed excellent focusing performance of the lens for both visible and THz radiations. SEM and Raman measurements of the lens were studied to analyse the laser-material interaction. The focusing properties of the lens were characterized and a good agreement with the simulations was achieved. Hence, we exploited a new way to fabricate thin flat lens. The one-step fabrication process is economical, convenient and has great potential for industrial scale up.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...